# SECOND DEGREE HOMOGENEOUS DIOPHANTINE EQUATION WITH THREE UNKNOWNS $x^{2}+y^{2}=122 z^{2}$ 

K HEMA<br>Assistant Professor, Department of Mathematics, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Trichy,Tamil Nadu, India.

Published Date: 03-January-2023


#### Abstract

The homogeneous ternary second degree equation given by $\mathrm{x}^{2}+\mathrm{y}^{\mathbf{2}}=\mathbf{1 2 2} \mathrm{z}^{\mathbf{2}}$ is analysed for its non-zero distinct integral points on that. Completely various patterns of the equation into consideration are obtained.


Keywords: Ternary, quadratic, Integer solutions, Homogeneous, Diophantine.

## 1. INTRODUCTION

It is acknowledge that the quadratic Diophantine equations with 3 unknowns (homogeneous or non-homogeneous) are made in selection[1,2,]. Significantly, one might refer [3-17] for homogeneous or non-homogeneous ternary second degree Diophantine equations that are analysed for getting their corresponding non-zero distinct integer solutions . During this communication, one more attention-grabbing homogeneous ternary quadratic Diophantine equation given by $x^{2}+y^{2}=122 z^{2}$ is analysed for its non-zero distinct integer solutions through completely different strategies.

## 2. METHODS OF ANALYSIS

The ternary second degree equation to be solved for its integer solutions is

$$
\begin{equation*}
x^{2}+y^{2}=122 z^{2} \tag{1}
\end{equation*}
$$

## Pattern I:

Write 122 as
$122=(11+\mathrm{i})(11-\mathrm{i})$
Assume
$z=a^{2}+b^{2}$
Using equations (2), (3) in (1) and using the tactic of resolving, consider,
$x+i y=(11+i)(a+i b)^{2}$
Equating the real and unreal elements, one has
$x=11 a^{2}-11 b^{2}-2 a b$
$y=a^{2}-b^{2}+22 a b$

## International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 10, Issue 1, pp: (1-5), Month: January - April 2023, Available at: www.noveltyjournals.com
Therefore we tend to get,
$x=11 a^{2}-11 b^{2}-2 a b$
$y=a^{2}-b^{2}+22 a b$
$z=a^{2}+b^{2}$

## Pattern 2:

Equation (1) can also be wriiten as
$x^{2}+y^{2}=121 z^{2}+z^{2}$
$\Rightarrow x^{2}-121 z^{2}=z^{2}-y^{2}$
(4) can be written within the quantitative relation type as
$\frac{x+11 z}{z+y}=\frac{z-y}{x-11 z}=\frac{\alpha}{\beta}, \beta \neq 0$
which is adore the system of double equations
$\beta x-\alpha y+z(11 \beta-\alpha)=0$
$\alpha x+\beta y-z(\beta+11 \alpha)=0$
Applying the tactic of cross-multiplication to the on-top system of equations, note that
$x=11 \alpha^{2}-11 \beta^{2}+2 \alpha \beta$
$y=-\alpha^{2}+\beta^{2}+22 \alpha \beta$
$z=\alpha^{2}+\beta^{2}$

## Pattern III :

One can also be written as

$$
\begin{equation*}
x^{2}+y^{2}=122 z^{2} * 1 \tag{6}
\end{equation*}
$$

Write 1 as
$1=\frac{(3+4 i)(3-4 i)}{25}$
Put (3),(7) in (6) and using the tactic of resolving, consider,
$x+i y=\frac{11+i}{5}(a+i b)^{2}(3+4 i)$
After Equating the real and unreal terms on either sides, it's seen that
$x=\frac{1}{5}\left(29 a^{2}-29 b^{2}-94 a b\right)$
$y=\frac{1}{5}\left(47 a^{2}-47 b^{2}+58 a b\right)$

## International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 10, Issue 1, pp: (1-5), Month: January - April 2023, Available at: www.noveltyjournals.com
As our interest is on finding integer solutions replacing a by $5 \mathrm{~A} \& \mathrm{~b}$ by 5 B , we get
$x=29 A^{2}-29 B^{2}-94 A B$
$y=47 A^{2}-47 B^{2}+58 A B$
$z=5 A^{2}+5 B^{2}$


Here (8) and (3) represents non-zero distinct integral solutions of (1).

## Pattern IV:

Introduction of the linear transformations
$\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}, \mathrm{z}=2 \mathrm{w}$
in (1) leads to
$u^{2}+v^{2}=244 w^{2}$
Assume
$w=c^{2}+d^{2}$
$244=(10+12 \mathrm{i})(10-12 \mathrm{i})$
Substituting (11) \& (12) in (10) and using the tactic of resolving, consider,
$u+i v=(10+12 i)(c+i d)^{2}$
After Equating the real and unreal terms on either sides, it is seen that
$\left.\begin{array}{l}u=10 c^{2}-10 d^{2}-24 c d \\ v=12 c^{2}-12 d^{2}+20 c d\end{array}\right\}$
Substituting (13),(11) in (9), we get,
$x=22 c^{2}-22 d^{2}-4 c d$
$y=-2 c^{2}+2 d^{2}-44 c d$
$z=2 c^{2}+2 d^{2}$

## Pattern V:

Equation (10) can also be written as
$u^{2}-144 w^{2}=100 w^{2}-v^{2}$
Equation (14) can be written within the quantitative relation type as
$\frac{u+12 w}{10 w-v}=\frac{10 w+v}{u-12 w}=\frac{\alpha}{\beta}, \beta \neq 0$
which is adore to the system of double equations
$\beta u+\alpha v+w(12 \beta-10 \alpha)=0$
$\alpha u-\beta v-w(12 \alpha+10 \beta)=0$

## International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 10, Issue 1, pp: (1-5), Month: January - April 2023, Available at: www.noveltyjournals.com
Applying the tactic of cross-multiplication to the on-top system of equations, note that

$$
\begin{aligned}
& u=-12 \alpha^{2}+12 \beta^{2}-20 \alpha \beta \\
& v=-10 \alpha^{2}+10 \beta^{2}+24 \alpha \beta \\
& w=-\alpha^{2}-\beta^{2}
\end{aligned}
$$

Therefore, seeable of (9), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=-22 \alpha^{2}+22 \beta^{2}+4 \alpha \beta \\
& y=-2 \alpha^{2}+2 \beta^{2}-44 \alpha \beta \\
& z=-2 \alpha^{2}-2 \beta^{2}
\end{aligned}
$$

Following the on-top procedure, one might get different set of integer solution to (1).

## 3. CONCLUSION

In this paper, an endeavour has been created to get non-zero distinct integer solutions to the ternary quadratic Diophantine equation $x^{2}+y^{2}=122 z^{2}$ representing homogeneous cone. As there are varieties of cones, the readers might rummage around for alternative varieties of cones to get integer solutions for the corresponding cones.

## REFERENCES

[1] L.E. Dickson, History of theory of Numbers, Vol. 2, Chelsea publishing Company, Newyork, 1952.
[2] Mordel, Diophantine Equations, Academic press, Newyork, 1969.
[3] Gopalan M.A., Geetha D,Lattice points on the hyperbola of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$, Impact J Sci Tech:4:23-32,2010.
[4] Gopalan M.A., Vidhyalakshmi S,Kavitha A, Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, The Diophantine J Math; 1(2):127-136, 2012.
[5] Gopalan M.A., Vidhyalakshmi S, Sumathi G,Lattice points on the hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, Diophantine J Math; 1(2): 109-115, 2012.
[6] Gopalan M.A., Vidhyalakshmi S, Lakshmi K, Integral points on the hyprerboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantine J Math; 1(2):99-107, 2012.
[7] Gopalan M.A., Vidhyalakshmi S, Mallika S, Observations on hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$, Bessel JMath; 2(3):221-226,2012.
[8] Gopalan M.A., Vidhyalakshmi S, Usha Rani T.R., Mallika S, Integral points on the homogeneous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$, Impact J Sci Tech; 6(1):7-13, 2012.
[9] Gopalan M.A., Vidhyalakshmi S, Sumathi G, Lattice points on the elliptic paraboloid $z=9 x^{2}+4 y^{2}$, Advances in Applied Mathematics;7(4): 379-385, 2012.
[10] Gopalan M.A., Vidhyalakshmi S, Usha Rani T.R.,Integral points on the non-homogeneous cone $2 z^{2}+4 x y+8 x-4 z=0$, Global Journal of Mathematics and Mathematics sciences 2012;2(1):61-67.
[11] Gopalan M.A., Vidhyalakshmi S, Lakshmi K, Lattice points on the elliptic paraboloid $16 y^{2}+9 z^{2}=4 x$, Bessel J Math;

## International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 10, Issue 1, pp: (1-5), Month: January - April 2023, Available at: www.noveltyjournals.com
[12] Gopalan M.A., Geetha T, Hemalatha K,"On the ternary quadratic Diophantine equation $5 x^{2}+5 y^{2}-2 x y=20 z^{2}$, International Journal of multidisciplinary research and development,Vol-2,Issue:4, 211-214, April-2015.
[13] Selva Keerthana K, S Mallika, "On the ternary quadratic Diophantine equation $3 x^{2}+3 y^{2}-5 x y+2(x+y)+4=15 z^{2}$, Journal of Mathematics and informatics, vol.11,21-28,2017.
[14] Dr. Mallika S, On the Homogeneous ternary quadratic Diophantine equation $6 x^{2}+7 y^{2}=559 z^{2}$, International Journal Of Mathematics Trends and Technology, vol 65, Issue 7- July 2019,206-217.
[15] Dr. Kavitha A, On the Homogeneous ternary quadratic Diophantine equation $5 x^{2}+4 y^{2}=189 z^{2}$, International Journal Of Mathematics Trends and Technology, vol 65, Issue 7- July 2019,286-295.
[16] Dr Kavitha A, Sasi Priya P, A Ternary Quadratic Diophantine Equation, $x^{2}+y^{2}=65 z^{2}$, Journal of Mathematics and Informatics, vol 11, 2017,103-109.
[17] S.Vidhyalakshmi, K.Hema,M.A.Gopalan, On the Homogeneous Cone $z^{2}=74 x^{2}+y^{2}$, International Journal of Research Publication and Reviews, vol 3, 2022, 555-563.

